

DEPARTMENT OF PHYSICS COLLEGE OF BASIC SCIENCE AND HUMANITIES OUAT. BHUBANESWAR – 751003

No-46/PHY /BSC

Date 21/03/2018

QUOTATION

Sealed quotations are invited for supply of the items as at Annexure-1 from the suppliers/vendor/reputed manufactures fulfilling the condition indicated below.

Interested Supplier / Firms should submit their quotation indicating their rates and VAT/taxes if any along with other terms and condition in a sealed cover for supply of the items. The quotation should reach the undersigned on or before 28.03.2018. The quotation should include installment charge of the equipments.

Conditions

- 1. The firms must be registered under the OUAT Act-2004 and submit the Xerox copy of TIN Certificate along with the quotations.
- 2. The articles should reach F.O.R Bhubaneswar (College of Basic Science & Humanities) OUAT, Bhubaneswar.
- 3. The transporting charge will be borne by the supplier
- 4. Payment will be held up if defective material are supplied
- 5. The authority reserves the right to cancel or change the quotation without assigning reason
- 6. Warranty for a period of 36 months (3years) towards any manufacturing defects.

HOD, PHYSICS

Memo No.47/Phy, Dt.21.03.2018 Copy to the College notice board for wide circulation.

HOD, PHYSICS

Memo No.48/Phy, Dt.21.03.2018 Copy to the Director, College of Basic Science and Humanities for information and for display in the notice board.

HOD, PHYSICS

Annexure-1

Quotation to be called for purchase of instruments for the year 2017-18

Name of the college/establishment—Department of physics, College of Basic science and Humanities, OUAT---Bhubaneswar-751003------

				1
Sl.no	Course	Item	Detailed technical specification	No.of units
1		Babinet's	Index scale, Vernier Scale, Wedge	
		compensator(analysis	Box, Two wedges cut in mutually	
		of elliptically	perpendicular direction of Optic	
		polarized light	axis. Long wedge is movable by	
			means of micrometer drum.L.C-	
			0.001 cm	
2		Polarisation using	Light intensity of plane polarized	
		quarter wave plate	light waves as a function of	
			analyzer position, Verification of	
			Malus Law	
			Verification of Inverse square Law	
3		Zeeman effect	Constant deviation Spectrograph,	
		Spliting of Spectral	Constant deviation Prism, Strong	
		lines in presence of	electromagnet producing field of	
		Magnetic field	15Kgauss,Neon discharge tube, H	
			V D	
			Wooden stand for Neon discharge	
			tube, Power supply 0-3A per coil,	
			Fabry perot etalon, Micrometer eye	
			piece, Digital gauss meter,	
			Condensing Lens	
4		Fabry-perot	Detremination of Wavelength,	
		interferometer	Hyperfine Structure. Sodium light	
			with complete set, Wavelength	
			separation of D lines, Power supply	
5		Michelson's	Wavelength of monochromatic	
		Interferometer	light of Sodium light/He-Ne Laser,	
			L C01 mm Magnification of	
			Telescope 3x	
6		Energy gap o&	Four Probe Sample(Ge ,.50	
		Resistivity of	mm),Oven (200 C 37 R ,45 V,	
		germanium by four-	digital Voltage Measurement,	
		probe method at	Constant Current Generator,	
		Different Temperature	Mercury Thermometer Range (0-	

			150) No -4 Power Supply	
7	D an T O m	Dielectric Constant nd Curie Cemperature Df Ferro Electric naterials	DEC Sample, Probe Arrangement, Oven ,oven Controller, Digital Capacitance Meter,50-6000pf	
8	D aj	Diac Characteristics pparatus	2 Dc regulated power supply,0-15v Dc/150mA, v meters and Ameter Complete power cords and patch cords	
9	T aj	Friac Characteristics pparatus	2 Dc regulated power supply,0-15v Dc/150mA, v meters and Ameter Complete power cords and patch cords	
10		haracteristics of a AOSFET	2 Dc regulated power supply,0-15v Dc/150mA,and 0-5v Dc /150mA3 meters and complete set	
11	C g w fe	Closed loop voltage ain and gain band width product of a –ve eedback amplifier	Audio Frequency Generator, Digital Ac voltmeter, CRO and complete set	
12	C F	Curie Temperature for Ferro Electric Material	Digital Voltmeter, Audio Oscillator Standardv Capacitor, Dielectric Cell, PID control Thermocouple , Oven	

13	Frequency response of RC coupled amplifier	A F Oscillator, A c milivoltmeter, Band Width, Voltage gain ,Frequency Response Curve	
14	Characteristics of operational amplifier a.As a deferentitor b.As a Integrator c.As a subtractor d.As a summer/adder e.As voltage follower f.As a schemeit trigger g.As inverting n non inverting amplifier	Power supply(1.5v) for IC 741,2 contineously variable power supply(0-5 volt),stair resistances(2.2k,4.7k,3.3k)5 no.s each,47k,1k,33k,5 no.s each and 10k 5no.s IC741-5No.s,spare plasti cotted single tinned copper wire,digital meter with selector switch to read V_{1} , V_{2} , V_{0}	
15	Transistor amplifier & amplification factor	Analog type, ,Twp regulated Power Supply, Four Meter, Quality Connecting leads(CE and CB mode)	
16	Surface tension of water by capillary rise method and to compare surface tension of two liquids	Travelling microscope, capillary tube apparatus with capillary tube clamp,250ml borosilicate glass beaker, rising table	
17	CE characteristics and CB characteristics	Two continuously variable regulated power upply,Voltmeter(2),Ammeter(2) Connecting lead	
18	Determine the Thermal conductivity of Copper using searles Conductivity apparatus	Searles Apparatus,Half degree Thermometer(2),Precesion Thermometer(110x1/10) Steam Generaor ,/Boiler Hot Plate,Digital; balance ,Stop Clock,Screw Gauge.	
19	LCR Impedance apparatus.AC Power factor	AC Power Supply,Band Switch AC Moving Coil meter.R-L-C (three sets)	
20	Zeeman effect	Constant deviation Spectrograph, Constant deviation Prism, Strong electromagnet producing field of 15Kgauss,Neon discharge tube,	

		HVD Western LC New Picture	
		Wooden stand for Neon discharge	
		tube, Power supply 0-3A per coll,	
		Fabry perot etalon, Micrometer eye	
		piece, Digital gauss meter,	
		Condensing Lens	
21	Babinet's	Index scale, Vernier Scale, Wedge	
	compensator(analysis	Box, Two wedges cut in mutually	
	of elliptically	perpendicular direction of Optic	
	polarized light	axis. Long wedge is movable by	
		means of micrometer drum.L.C-	
		0.001 cm	
22	RC phase shift	RC phase shift osciilator	
	osciilator	Dual trace CRO	
23	To study Lissaious	DC regulated power supply of	
	figure	115v	
	8	Sign wave oscillation of 1khz	
		frequency.C.R.SPDT switches	
		potentiometers.IC741	
24	Co-efficient of	viscometer Searle's pattern, stop	
	viscocity by Searle's	clock, venier caliper, physical	
	viscometer method	weight box	
25	Co-efficient of	Poiseuille's viscosity apparatus,	
	viscosity by Capillary	travelling microscope, stop clock,	
	flow method	graduated cylinder, spirit level	
26	Young's Modulus by	Bending of beam apparatus, vernier	
	Bending of beam	calipers,galvanometer,stabilized	
		power supply, variable	
		potentiometer, slotted weights	
		500gmsx5,measuring tape	
07			
21	P-N junction diode	I, C regulated power supply, Four	
	and study its V-I	$\frac{\text{meters, 0-1.5 v 0-10 mA, (for})}{100000000000000000000000000000000000$	
	characteristics	Forward bias),0-35v and 0-	
20		SUMICROA for reverse bias	
28	Triode characteristics	Power supply($0-300$) volt aty	
		SUMA, Four meters, on/off	
		switch,Indicator,Bias voltage (0-	
		15V)	

29	Malus law for plane polarized light	Polarization of light and verification of Malus law
30	Wave length and angular spread of He- Ne laser using plane diffraction grating	He-Ne Laser2w,Mount for He-Ne Laser,Optical Bench For He-Ne Laser. Gratin and Holder. Screen
31	Colpitts oscillator	Colpitts oscillator Dual trace CRO 12 V Dc Regulated Power Supply
32	Tunnel diode characteristics Resistance Charactersicis	Dc regulated Power Supply of % volts, Meter for measuring voltage across Resistance and Tunnel diode(0-2v) Current Controal.Tunnel diode

Sl.no	Course	Item	Detailed technical specification	No.of units
33		EMF of two given	Two cells EMF are to be compared,3	
		primary cells by	resistance box,2 of low range and 1	
		using potentiometer	of high range, galvanometer with	
			lamp and scale arrangement, a storage	
			cell.ammeter,a voltmeter(0-5v),one	
			way key/battery eliminator two way	
			key,a jockey,a set square,connecting	
			wires and a piece of sand papers	
34		Determine Internal	Potentiometer, a battery/ battery	
		resistance of a given	eliminator, 20ne way key,a rheostat	
		primary cells using	of low resistance, a galvanometer, a	
		potentiometer	high resistance box, afractional	
			resistance box(1-10ohm),an	
			ammeter,a voltmeter,a leclanche cell,	
			a jockey, a set square, connecting	
			wires and a piece of sand papers	
35		Frequency of the ac	Sonometer, slotted	
		mains with a	weights500gmsx5,sensitive digital	
		sonometer	balance,transformer and	
			electromagnet, stand for	
			electromagnet	

36	Refractive index of a liquid by using convex lens & plane mirror	Convex lens,plane mirror,clean transparent liquid in beaker,an optical needle,an iron stand with base and clamp,arrangement plumb line plane glass slab,a spherometer,half meter scale,slide calipers.object pin	
37	Zener diode characteristics	Zener diode,2meter(analog model),DC regulated power	
38	Common emmiter and common base npn or pnp Transistor characteristics	Analog version,2 variable regulated power supply,4meters,high quality connecting leads	
39	Verification of Ohm's law	5v and 500ma DCbattery eliminator of 6v and 500ma,4 different carbon resistance	
40	Refractive index of glass slab by using Travelling microscope	Travelling microscope,3 different thickness of glass slab,lycopodium powder	
41	Verification of laws of combination(series) of resistances by using meter bridge	Meter bridge apparatus with pencil jockey	
42	Verification of laws of combination(parallel) of resistances by using meter bridge	Meter bridge apparatus with pencil jockey	
43	Focal lenth of a convex mirror using convex lens	An optical bench with four uprights,convex mirror and itsstands,convex lens and supported stands,two pins and pin stand,a knitting needle,a meter scale	

44	Focal lenth of a	concave lens, a convex lens of power	
	concave lens using	greatr than that of the concave lens	
	convex lens	stand and pin stand, strip plane	
		mirror, pinned lath and meter scale	
45	Determination the	Beam balance, weight	
	mass of two	box,forceps,two objects of different	
	different objects	masses	
	using beam balance		
46	The weight of a	A vertical wooden board with two	
	given body using	pulleys, slotted weights, 2 hangers, a	
	parallelogram law of	string, sheet of paper, drawing pins, a	
	vectors	strip of mirror,wooden block,spring	
		balance	
47	Young's modulus of	Young's modulus, measuring	
	elasticity of the	tape, slotted weight	
	material of a given		
	wire		
48	Surface tension of	Travelling microscope, capillary tube	
	water by capillary	apparatus with capillary tube	
	rise method	clamp,250ml borosilicate glass	
		beaker,rising table	
10			
49	Specific heat	Regnaults apparatus, calorimeter with	
	capacity of a given	lid and stirrer, calorimeter jacket, lead	
	solid by method of	shots,hypsometer,burner,tripod	
	mixtures	stand, wire	
		gauge,two0.5°thermometers,physical	
		balance, weight boxand fractional	
50	Desistance of siver	Weights Mater bridge fixed veltage never	
50	wire using mater	supply two dil registence	
	bridge and honce	box galvanometer micrometer	
	find specific		
	resistance of a given		
	material		
	material		